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Summary 

Uniform ring distributions of fundamental singularities for Stokes flows, Stokeslets and rotlets, are applied to 
obtain exact solutions for rotating oblate bodies in an unbounded viscous fluid. The technique used in the 
present investigation is the inverse-problem approach. Instead of determining the types of singularities and their 
spatial distributions for a given body geometry, the body shape is determined for a given distribution of 
singularities. The rotating axis of a body is perpendicular to the plane containing the ring and it passes through 
the center of the circular ring. The direction of rotlets is parallel to the rotating axis, while the Stokeslets are 
tangent to the ring and lie in its plane. By changing the radius of the ring and/or changing the strengths of 
Stokeslets and roflets, we obtain a family of rotating oblate bodies including simply-connected and doubly-con- 
nected bodies. Two special cases involving a slightly deformed sphere and a spinning slender torus are also 
discussed. 

1. Introduction 

We are concerned in this paper  with the rotation of an axisymmetric oblate body in an 
incompressible, inertialess fluid. The governing equations for the resultant flow surround- 
ing a rotating oblate body, if the fluid inertia is neglected, are the Stokes equations. As 
mentioned in the second part  (Chwang and Wu [4]) of this series of papers on low-Rey- 
nolds-number flows, determination of the solutions for the Stokes flow is still recognized 
to be difficult in general for arbitrary body shapes. As a consequence, not many  exact 
solutions are known. 

Adopting an oblate spheroidal coordinate system and some rather sophisticated 
analysis of associated Legendre functions, Jeffery [6] obtained the solution for the velocity 
field and the torque resisting the rotation of an oblate spheroid. Kanwal  [8] analyzed the 
flow surrounding a rotating torus by introducing a toroidal coordinate system. His 
solutions for the velocity field and the torque experienced by the torus were expressed in 
terms of infinite series involving Legendre functions. Based on the similar boundary-value 
approach, Brenner [1] solved the Stokes-flow problem for a slightly deformed sphere. 
Dorrepaal  et al. [5] obtained an integral solution involving modified Bessel functions for 
the rotation of a dosed torus, formed from the rotation of two equal touching circles 
about  their common tangent. 

An alternative yet powerful method of solving the Stokes equations is the singularity 
method. Chwang and Wu [4] and Chwang [2] have successfully applied the singularity 
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method to obtain many exact solutions for Stokes flows of various free-stream conditions 
past bodies of various geometric shapes. In this method, fundamental singularities such as 
Stokeslets and rotlets are ,distributed in the interior of a solid body in order to represent a 
given motion of the body. With a line distribution of rotlets, Chwang and Wu [3] 
constructed a number of exact solutions for the purely rotational flow generated by the 
rotation of axisymmetric prolate bodies of various shapes about their longitudinal axes. 
Johnson and Wu [7] investigated the Stokes flow past a slender torus of circular 
cross-section. With a line distribution of Stokeslets and rotlets on the body centre-line, 
they obtained an approximate solution for a rotating slender toms. 

In the present paper, we construct exact solutions for rotating oblate bodies in an 
unbounded inertialess fluid with uniform ring distributions of Stokeslets and rotlets. The 
technique used in the present investigation is the inverse-problem approach. Instead of 
determining the types of singularities and their spatial distributions for a given body 
geometry, the body shape is determined for a given distribution of singularities. By 
changing the radius of the distribution ring and/or  changing the strengths of Stokeslets 
and rotlets, we obtain a family of rotating oblate bodies including simply-connected and 
doubly-connected bodies. The limiting cases of a slightly deformed sphere and a slender 
torus are also discussed. 

2. Ring distribution of singularities 

With the inertia force being neglected, the velocity u and pressure p of an incompressible 
viscous fluid surrounding a rotating oblate body satisfy the Stokes equations 

• .U-~---0, IIp~---~•  2U, (1) 

where # is the constant viscosity coefficient. On the body surface S b, the no-slip boundary 
condition requires 

u - - o × x  f o r x o n S b ,  (2a) 

and far away from the body 

u = 0  a s x ~ o o ,  (2b) 

where a~ is the angular velocity and x is the position vector in a three-dimensional 
Euclidean space. If we take the rotating axis of an oblate body to be the z axis, then 

a~ = o~e~, (2c) 

where e~ is the unit vector along the z direction. 
With a uniform ring distribution of Stokeslets and rotlets on a circle in the x, y plane, 

centered at the origin with radius c (Figure 1), the velocity vector u is given by 

u ( x )  = f [ u s ( x  - i~; et) + u R ( x  - ~; fl)] c d~, (3) .% 
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Figure 1. Orientation of the coordinate system. 

where the position vector x of a field point P is 

x = r cos 0e x + r sin Oey + ,zez, 

the position vector ~ of a point Q on the ring is 

= C COS dpe x + c sin dpey, 

and the velocity fields of a Stokeslet and a rotlet are given by 

. (,,'~)~ 
.~(x; a) = ~ + R3 

and 

, , ~ (x ;  #) = # x x 

R 3 

respectively, with 

(4a) 

(4b) 

(4c) 

(4d) 

R = Ix [. (4e) 
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The vectorial strengths of the Stokeslets and rotlets are selected such that the direction of 
rotlets is parallel to the z axis, 

fl = flez , (4f) 

while the Stokeslets are tangent to the ring and lie in the x, y plane, 

a = d e , ,  (4g) 

where e ,  is a unit vector in the angular direction in the x, y plane (Figure 1). In terms of 
a cylindrical polar coordinate system (r, O, z), 

e ,  -- cos(• - O) e 0 - sin(g, - O) er, (4h) 

where e 0 and e r are unit vectors along the 0 and r directions respectively. 
Integrating equation (3) from ~ = 0 - r r  to ~ = 0 + ~r and using the relations (4a) to 

(4h), we have 

u ( x )  = uoeo,  (5a) 

= , e ( ~ )  + i~(k)  + I~(~) - e ( ~ )  

(5b) 

where 

R 1 = [x 2 -]- (r --1.- c)2] 1/2, (5c) 

k2 = 4rc 
R 2 ,  (50) 

K ( k )  and E ( k )  are the complete elliptic integrals of the first and second kinds, 
respectively, 

r ( / ¢ )  = f : /~ (1  - / :  s~)-~: d~, (6a) 

E ( k ) = f o ' r / 2 ( 1 - k 2  sin2t~) 1/2 dq~. (6b) 

3. Determination of body shape 

In terms of the cyhndrical polar coordinate system (r, 0, z), the surface of an axisymmet- 
ric oblate body is given by 

r = ro(z) ,  (7a) 



r 

- b - d  0 d b 
(o) 

r ~  
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Figure 2. Sectional view of an axisymmetric oblate body: (a) a class-A body, (b) a class-B body. 

and the maximum radius of the body is denoted by a, which occurs at the z = 0 plane 
(Figure 2) 

ro(0) -- a ( a >  c>~0). (7b) 

The no-slip boundary condition (2a) together with (2c) becomes 

u 0=tor o n r = r o ( Z  ). (8) 

By equations (5) and (8), we obtain an implicit equation for the body surface ro(z), 

 a__A = 2a_A 
f ie  r 2R 1 

r2z2c  ]4a2 , z2+r2+c2 ] 
+ K ( ~ )  + I~(k) - E ( k )  

z 2 + ( r - c )  zE(k)  ~ [  R21 

on r = r0(z) ,  (9a) 

where 

fl (9b) e ~ -  
a ~  

For given values of c/a and e, equation (9) provides an implicit relation to determine the 
body surface ro/a as a function of z/a with the left-hand side of (9a) determined by the 
condition (7b) as 

toa 3 2a [a+c  )] 
tic a+c  -d'-~-c E(k°) +K(k°  + - -  

4(a + c) a 2 + c 2 

ce (a + c) 2 - -  K ( k o )  - E ( k o ) ] ,  

(10a) 
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where 

4ac  
- -  o k2 = (a  + c) 2 (lOb) 

Equations (9) and (10) can be solved numerically by the Newton-Raphson method to 
give the body shape ro(z)/a which depends on the values of the ring size c/a and the 
singularity-strength ratio e. Alternatively, we may obtain from (9) and (10) the body 
surface z/a as a function of ro/a. The dimensionless ring size c/a varies from zero to 
one and the range for e is from zero to infinity. When e is equal to zero, we have a ring 
distribution of uniform Stokeslets. On the other hand, as e approaches infinity, we have a 
ring distribution of uniform rotlets only. 

4. Classification of body shapes 

We classify the shapes of axisymmetric oblate bodies into two categories: 
(1) Class A - simply connected bodies (Figure 2a), 
(2) Class B - doubly connected bodies (Figure 2b). 

A class-A body resembles the shape of a red blood-cell, while a class-B body  looks like a 
doughnut. 

When the dimensionless ring size c/a is between zero and 0.4411 (0 ~< c/a ~< 0.4411), 
the numerical results obtained from equations (9) and (10) indicate that only class-A 
bodies exist for arbitrary values of e (0 ~< e < oo). Figure 3 shows the body shapes at 
c/a = 0.1 and Figure 4 shows the body shapes at c/a = 0.4411. We note that as c/a 
tends to zero, equation (9a) reduces to 

fl---c- = (z2 +.rE)3/2 1 + --ea + 0 , 
( l l a )  

and (lOa) reduces to 

=2~r 1 + ~ + 0  
e a  

(11b) 

Therefore, by neglecting terms of the order of ( c / a )  2, the equation for the body surface 
becomes 

z 2 + ro 2 = a 2 a s  c/a ~ O, ( l l c )  

which is the same as that for a sphere of radius a. 
For 0.4411 < c/a < 0.6637, only class-A bodies exist, but the range of e is limited to 

0 ~< e < e 1, where e 1 < oo. If e is greater than e x, no solutions are possible for fixed values 
of c/a (0.4411 < c/a <~ 0.6637). Figure 5 shows examples of body shapes at c/a = 0.5. 

The surface of a class-A body intersects the z axis at - d  and d (Figure 2a). Hence the 
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Figure 3. Body shapes for c/a = 0.1. 
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existence of d (0 < d ~< a) is a necessary condition for the existence of a class-A body. 
Since r 0 ( + d)  = 0, equations (9) and (10) yield, in the limit as r tends to zero, 

oa_  
rl(d/a; c/a, e) ( d2 + c2),/z 

)] a [~_Z~_cE(ko) + K ( k o  a W c  

2 ( a + c )  a 2 + c  2 . . ] 
ce -~a+-~iK(ko)-E(ko) ] .=0' (12) 

where k 0 is given by (10b). Thus, d is the positive root of equation (12). At c = 0, the 
solution of (12) is d - - a  regardless the values of e, which corresponds to a sphere of 
radius a. This result is consistent with (11c) with r 0 = 0. 

For  fixed values of e, the numerical result of (12) indicates that dfa decreases as c/a 
increases. This is also shown in Figures 3 and 4. For fixed values of c/a, d/a (which is 
the value of z/a at r = 0) decreases as e increases; it attains a minimum value as e 
approaches infinity. If d,, denotes the minimum value of d at which aF1/ad= o, we 
obtain from (12), as e tends to infinity, 

dr, = (3/2)1/2c. (13a) 



314 

1.O 

411 

0.8 

O 

0.6 

0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

Z/O 

Figure 4. Body shapes for c/a = 0.4411. 

Substituting (13a] into [12], we have 

dm//a --- 0.5403 and c/a = 0.4411 as e --* ~ .  (13b) 

Therefore, as e approaches infinity, the maximum value c/a may have is 0.4411. As c/a 
increases from zero to 0.4411, d/a decreases from 1 to 0.5403 (see Figure 4). 

For c/a greater than 0.4411, although there is no solution for d m from equation (!2) as 
e tends to infinity, there is a possible solution if e is in the range between 0 and e 1 
(e 1 < ~ ) .  From (12), OF1/Od vanishes at d = d m, 

dm=c[(3- -~a) / ( l+~a)]  1/2 (14a) 

Substituting (14a) into (12), we have an imphcit equation for e 1 as a function of c/a, 

3 c 
Fl(d,,/a; c/a, el)  = 0 for 2 ela >~ O. (14b) 

For  example, for c/a = 0.5, e 1 is 1.6124 and the corresponding value of d,,/a is 0.4765 
(see Figure 5). For a class-A body, the smallest possible value of d,, is zero which occurs 
at c/a -- 0.6637, and the corresponding value of e 1 is 0.4425 (see Figure 6). 

For c/a greater than 0.6637, both class-A and class-B bodies are possible. Examples of 
body shapes are shown in Figure 7 for c/a = 0.7.. We note from Figure 7 that even for a 
class-B body, the singularity-strength ratio e cannot exceed a certain limiting value e 1 
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Figure 5. Body shapes for c/a = 0.5. 

(e 1 = 0.3720 at c/a -- 0.7) which will be discussed in the next paragraph. For fixed values 
of c/a, d/a attains a maximum at e = 0, which represents a ring distribution of uniform 
Stokeslets only. As mentioned before, for any fixed value of e, d/a decreases as c/a 
increases for a class-A body (see Figure 3 to Figure 7). For e -- 0 and d = 0, equation (12) 
gives  

c/a=0.8585 a t e = 0  a n d d = 0 .  (15) 

Therefore, for 0.6637 < c/a < 0.8585, both class-A and class-B bodies are possible, 
depending on the values of e. The class-A body and the class-B body are separated by a 
curve with e = e 2 which is determined from (12) at d = 0 (see Figure 8). 

For  0.8585 ~< c/a < 1, only class-B bodies are possible for 0 ~< e < e r The surface of a 
class-B body intersects the r axis at r o = t in addition to r 0 = a (see Figure 2b). Therefore 
at z = 0, equations (9a) and (10a) give 

F2(t/a; c/a, e) 

_ a 3 [ t+c ] 2a2(t+c) 
t2(t+c) ~ - c E ( k l )  +K(kl) + cet 2 

a + c  )] 
a [~__~_cE(ko) + K ( k o  

a-bc  
2(a+C)[ce (--~+~2 K ( k ° ) a 2 + c 2  - " - E ( k ° ) ]  =0 '  

(16a) 
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Figure 7. Body shapes for c / a  = 0.7. 
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where 

k 2 = _ _  4tc 
( l  -4- C) 2 

and k0 2 
~F2/at = O, then the solution of the simultaneous equations 

is given by (10b). 

(16b) 

If t,, ( < a )  denotes the maximum value of t at which 

(17) OF2 F2(t.,/a; c/a, el)=0 and c/a, el)=0 

gives the limiting value of e 1 as a function of c/a. Numerical solutions of (17) are shown 
in Figure 8 for 0.6637 < c/a < 1. Figure 9 shows examples of class-B bodies at c/a = 0.9, 
in which case the limiting value of e 1 is 0.0828. 

5. The moment coefficient 

The net force exerted by the fluid on a point Stokeslet with a vectorial strength a is 
- 8~rga (see Chwang and Wu [4]). Therefore, for a ring distribution of uniform Stokeslets 
with a strength density a% (equation (4g)), the net force on the body vanishes due to the 
symmetry of the ring and the antisymmetry of the strength density. Similarly, the pressure 
outside an axisymmetric oblate body rotating about the symmetry axis is constant 
throughout the fluid domain. 

The net moment (or torque) on the oblate body due to a ring distribution of uniform 
Stokeslets does not vanish, it is in the negative z direction with a magnitude 

M s = 8~'ga(2'n'c)c = 16rt2/xac 2. (18a) 

On the other hand, the net moment on the oblate body due to a ring distribution of 
uniform rotlets with density fie z is also in the negative z direction with a magnitude (see 
Chwang and Wu [3]) 

M R = 8~rgfl(2~rc) = 16~r2gflc. (18b) 

Therefore, the total moment on the rotating oblate body is 

M = - M e ~ ,  M = M , + M  R. (18c) 

The moment coefficient Cm, normalized with respect to 8~rg~0a2b, is 

Cm=2~'(l +C)flc/(toa2b),  (19) 

where b is the maximum half-thickness of an axisymmetric oblate body (see Figure 2) and 
toa3/flc is given by (10). 
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As e tends to zero, the body is generated by a ring distribution of uniform Stokeslets 
only. For this limiting case, (19) reduces to 

~C 2 [ a2+c  2 ]-1 
lim C, .=  2 b ( a  + c) [ ~a + S 2 K ( k ° ) -  E(k°) ' (20) e---~ 0 

where 

4ac 
- - .  (lOb) k 2 =  (a  + c)2 

For 0 ~< c/a <~ 0.4411, the singularity ratio e may vary from zero to infinity. As e 
approaches infinity, (19) becomes 

e-~o~lim C,,-  Ir(a+c)b [a+c_~z_~_cE(ko) + K ( k 0 ) ]  -1 (21) 

for c/a greater than 0.4411, the value of e is limited to the range of 0 ~< e < el, where e t 
is obtained from (14b) for 0.4411 < c/a <~ 0.6637 and from (17) for 0.6637 ~< c/a < 1. 

The moment coefficient C m as computed from (20) and (21) is plotted in Figure 10 
versus the spacing ratio c/a. For c/a greater than 0.4411, the moment coefficient curve 
C m for e ~ oo is connected to the curve at e = e x. We may interpret that the entire lower 
curve in Figure 10 is evaluated at e = et, with ex equal to infinity for 0 ~ c/a <~ 0.4411. 
For  any other values of e between zero and et, the value of C m lies in the region bounded 
by the two limiting curves at e = 0 and e = e~ in Figure 10. We note from Figure 10 that 
C m = 1 at c/a = 0, which represents the moment coefficient for a sphere. For  fixed e, Cm 
increases monotonically as c/a increases, and it increases as e increases for fixed values 
of c/a. 
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Figure 10. The moment coefficient C,, versus c/a. 
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6. A slightly deformed sphere 

As spacing ratio c /a  tends to zero, equations (9) and (10) reduce to 

- :  ([I otct] 0~a 3 2~ra 3 + + 4 

]~C (Z2 ..F r02)3/2 4 ( z 2 +  4 ) 2  

c[ 3, 4z ,c2 tel,i/ + - -  1 + + O (22a) 
e a  8(z 2 ..i._ ~ )  2 

and 

°a~=~l[l+~C~.c ~+0/c;]  +--c[ ~+ ~c~ + 0  ~ c t4]) 
ea 8 --~ a ' 

(22b) 

respectively. By neglecting terms of the order of ( c / a )  2, (22) reduces to (11) which is the 
equation for a sphere of radius a as discussed in Section 4. However, if only terms of the 
order of ( c / a )  4 are neglected, (22) is the governing equation for a slightly deformed 
sphere rotating about the z axis with an angular velocity ~. By (18) and (22b), the 
corresponding moment on this slightly deformed sphere is 

1 c 

M- 8~oa~ • t  4(l+--~)ea °2+o(C)' e z. (23) 

By neglecting terms of the order of ( c / a )  4, a slightly deformed sphere given by (22) 
may be represented by a point rotlet with a vectorial strength 

2~rc(/3 + ac)e~ (24a) 

and a point rotlet-quadrupole with a vectorial strength 

- l~rc3(2fl + ac)e . ,  (24b) 

both singularities being located at the origin. The velocity field due to a point rotlet 
located at the origin with a vectorial strength e~ is given by 

ulc(x; ez) ez × x r 
R3 ( z2 + r2)3/2 e 0 (25) 

and the velocity field for a rotlet-quadrupole is 

r ( r 2 - - 4 z  2) 
a 2 u R ( x ;  ez) - 3  e e. (26) 

~Z 2 (Z 2 +.r2) 7/2 
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The  above  results agree with the solutions of  Jeffery [6], Brenner  [1], and Chwang  and 
W u  [3] for  the l imiting case of  a spheroid  as the eccentricity approaches  zero. 

7. A s l e n d e r  t o m s  

A spinning slender t o m s  discussed by  Johnson  and W u  [7] provides a special case for  us 
to compare  the results. We  shall change the variables f rom z and  r to c and ~b b y  

z = - c c  sin q~, (27a) 

r = c(1 + ,  cos q,). (27b) 

The  body  surface given by  (7a) becomes  

c = ( ( ~ ) ,  (28a) 

and  the condi t ion (7b) reduces to 

c(0) = a - c (28b) 
C 
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For a slender toms, c << 1. Substituting (27) into (9a), comparing the constant terms 
and the cos ~k terms, and neglecting terms of O(~ 2 In c), we can determine the singularity 
strengths as 

o)c 

a = 4 [ l n ( 8 / , )  - 2] ' (29) 

= 2 [3 I n ( 8 / , )  - 7 ] .  (30) 

For a given body surface, 0~c is a constant. Hence, c must be a constant on the surface of 
a very slender toms. This constant is determined from (28b). 

The above results agree exactly with the approximate solutions of Johnson and Wu [7] 
for a very slender torus of circular cross-section. Figure 11 shows a comparison between 
exact class-B bodies as computed from (9a) and circular toil. In Figure 11, the values of e 
for exact class-B bodies are so chosen that t = 2c - a. We note from Figure 11 that as c/a 
approaches one, the body becomes slender, and the body shape approaches that of a 
circular toms. 
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